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In this note we propose an extension of interval arithmetic [2, 3] by introducing two
non-standard operations for subtraction and division of intervals.

Denote by I(IR) the set of all intervals [« 8] on the real line IR. (An interval may be
considered either as an element (c, 3) of IR? with a < 3, or as a point set {£ | a < € < 3}
in IR.) We shall denote the left endpoint of a € I(IR) by a~ and the right endpoint of a
by a™, so that a = [a~,a™]. The length of the interval a we denote by u(a) =at —a~.

Define in I(IR) addition by means of

(A) a+b=a" +b", a” +b"]
and scalar multiplication by
(SM)

[ Jaa™, aa™], if a <0,
Y= [eat, aa”], if a<0.

The product (—1)a is denoted briefly by —a.

The following relations hold in I(IR) with respect to the operations (A) and (SM):

1. I(IR) is a commutative semigroup with respect to (A), i. e.: (la) a+b=b+a
and (1b) (a+b)+c=a+ (b+¢);

2. a(b+c¢) = ab+ ag;

3. (a+ f)e = ac+ Bc for aff > 0;

4. a(Be) = (af)c;

5. 0a = 0;

6. la = a.

Denote the algebraic system of the set I(IR) and the operations (A) and (SM) by
Iy = (I(IR), (A), (SM)). Iy is a quasilinear space in the sense of [1].

Define now a non-standard subtraction in I(IR) by means of

(S) a—b=[min{a” —b",at —b*}, max{a” —b",at — bt}

An equivalent definition is:

a—b= { [a7 7b7aa+ 7b+}’ if :U'(a) Z H’(b)a
[at —bT,a™ —=b7], if u(a) < u(d).

Note that in general a — b # a + (—b) (here, of course, a + (—b) is the standard
arithmetic subtraction); a — b = a + (—=b) iff u(a)u(d) = 0.
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Denote the algebraic system (I(IR), (A4),(SM),(S)) by I;. The following relations
hold in I; in addition to relations 1-6:

7. (—a) —b=(-b) —q;

8. afa —b) = aa — ab;

9. (a+ B)e = ac— (—Pc) for af < 0.

Some simple corollaries are: a —a =0, a—b = —(b—a), a — (=b) = b — (—a).
Relations 3 and 9 can be combined in the general formula:

| ac+ Be, if af >0,
(a+6)c{ ac— (—=pe), if af <0.

In what follows we shall frequently make use of the function u(a). This function
satisfies the following relations:

(1) (@) >0, plaa) = lalu(a),  plab) = |u(a) £ u(d)].

Note that relations 7, 8 and 9 correspond in some sense to relations la, 2 and 3.
We give next an analogue to relation 1b (associative rule for addition and subtraction).
Denote for brevity: My = (u(a) — u(e)) (u(b) — p(d)), Ma = ((a) — (b)) (p(c) — p(d),
M5 = (u(a) — u(d))(p(e) — u(b)). Then we have:

1o @ro-ero={ (ZOTETN £anZ0
(a+c)—(d+b), it My >0,

10b. (a=b)+(c—d)=1< (a—(=¢)+((=b)—d), if My<0, M; <0,
(a—(—=c)) = (b—(=d)), if My <0, M;>0.
(a+d) — (b+c), if My >0,

10c. (a=b)—(c—d)=1] (a—(=d))—(b—(-¢), if My<0, M3<O0,
(a—(=d)) = ((=b) —¢), if My<0, Ms>0.
(

As special cases we have : (a+b) —a = b; (a —b) +a = a for ula) > u(b);
(a —b) —a = —b for p(a) > p(b). The following corollaries hold as well:

Proposition 1 a+b=c impliesa=c—b and b=c— a.

Proposition 2

Proposition 3 The equation a + x = b has a solution if u(a) < p(b). In this case the
unique solution is x = b — a.

In particular the equality a4+ = 0 has a solution if and only if u(a) = 0; the solution
is then x =0 — a = —a.
We shall introduce a norm in I; by

llal| = max{]a~], |a*[}.

Then we have obviously ||a|| = r(a,0) and ||a—b|| = r(a,b), where r(a, b) is the Hausdorff
distance between a and b:

r(a,b) = max{ja” — b~ |,|aT — bT|}.
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Remark: It may be of interest to consider abstract quasilinear spaces with three
operations which satisfy by definition relations 1-9 (or relations 1-10; in this case a
function p should be also defined by means of (1)). In such quasilinear spaces one can
introduce a norm; and then study normed quasilinear spaces.

The (standard) operation for multiplication in I(IR) is

(M) ab = [min{a~b~,a"b",aTb™,aTb"}, max{a~b",a"bT,aTb™, atbT}].

The scalar multiplication (SM) is, of course, a special case of (M).

In order to formulate an equivalent definition of (M), which is more useful for practical
computations, we introduce some further notations. Given a € I(IR), denote by a the
endpoint of @ which has maximum absolute value (for example, if a = [—5,3], then
a = —5). Given a,b € I(IR), we denote (as in [3]) the interval [min(a™, b~ ), max(a™,b™)]
by a\/ b. We shall say that a and b are of equal signs if either a= > 0, b~ > 0 or a™ < 0,
bt < 0; a and b are of opposite signs if either a= > 0, b* < 0 or a* < 0, b~ > 0. The
following definition is equivalent to (M) in the case b Z 0:

a~b~\/atb", if a,b are of equal signs,
(M) ab=<{ a bt \/atb™, if a,b are of opposite signs,
(b)a, if a30.

Let us introduce now a non-standard division in I(IR). For a,b € I(R), 0 &€ b, we
define:

a” /b= \/aT/bT, if a,b are of equal signs,
(D) a/b=< a”/bT\a*/b~, if a,bare of opposite signs,
(1/(d))a, if a30.

The reader may note the similarity between (D) and (M').
It can be easily shown that a(1/b) means standard arithmetic division: a(1/b) =
{&/n] & € a,n € b}. In general a/b # a(1/b); we have a/b = a(1/b) if and only if

wla)uls) = 0.
Denote by I the algebraic system (I(IR), (4), (S), (M), (D)). Here are some prop-
erties of I.

Proposition 4 Let a,b,c € I(IR), ab > 0 and 0 & abc. Then we have:
(axbec=actbe, (atbd)/c=alctb/c.
Proposition 5 If0 ¢ b, then (ab)/b = a.
In particular we have a/a =1 (0 & a).
Proposition 6 ab = ¢ implies a = ¢/b and b = ¢/a.
For a € I(IR), 0 € a, define the function v by

v(a) = { ai‘/a;, %f a; > 0,
a”/at, if at <O.
The function v has the following properties:
via) > 1,
v(ab) = v(a)v(b),

v(a/b) = |v(a)/v()|*, |a* = { ?/,oz, i 83;7< 1.
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Proposition 7

a = cb, if v(a)>wv(b),

a=c/(1/b), if v(a)<uv(b).

Proposition 8 Let a,b € I(IR), 0 &€ a. If 0 € b, the equation (E) ax = b has a unique

solution x = b/a. For 0 € b (E) has a unique solution if and only if v(a) < v(b). In that
case the solution is again given by x = b/a.

c—a/b<:>{

Finally we shall give a possible application of the extended interval arithmetic.

Given a real rational function ¢(&1,&s,...,&,), it is asked to find the range f of
values of o, when &; varies in given intervals z; € I(IR), i =1,...,n.

In some simple cases (when each &; appears only once and to the first power in )
we can solve this problem by means of the standard interval arithmetic. For example,
given x; € I(R), i =1,...,4, we can write:

{ _ 26 =36
4 & +&

replacing the variables &; by x1, &2 by x2, etc. and the operations in the expression for ¢
by standard arithmetic operations between the corresponding intervals. The interval
expression thus obtained can be easily evaluated by means of interval arithmetic.

More generally, given a real function ¢ = p(&1,...,&,) and x1,...,2, € I(IR), we
want to be able to write an interval expression for the range of ¢ as & vary in x;. We hope
that our arithmetic extends the possibilities for treating such problems. In particular,
we hope that the theory of matrix computations with intervals (see [2], Ch. 5) can be
refined when extended interval arithmetic is used.

As an example consider the rational expression p(§) = (a€ + 8)/(v€ + §), wherein
the variable £ € x € I(IR) occures twice. Assume that ad — Sy # 0 and 0 & vz + 6.
Assume for simplicity 0 € ax + 0 as well, so that for £ € x we have signp(£) = const =
o € {—1,1}. It is easily seen then, that

{e(@) [ € € 2} C (ax + B)(1/(vz +9)).

“w_»

& } (2 + (—322)) (1) (w5 + 7)),

The sign “C” cannot be replaced by in general. However, using extended inteval
arithmetic we are able to obtain an equality relation, namely we can state:

_ [ (ax+B)(1/(yz +4)), if sign(ay) =0,
lp@) [Eea}= { (ax + B)/(yx + 9), if sign(ay) # o.

Note that in the case sign(a7y) = o standard arithmetic division is used, whereas by
sign(ary) # o the division is non-standard.
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